Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

a__isNatList(nil) → tt
a__length(nil) → 0
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = x1 + 2·x2   
POL(a__U11(x1, x2)) = x1 + 2·x2   
POL(a__and(x1, x2)) = 2·x1 + 2·x2   
POL(a__isNat(x1)) = x1   
POL(a__isNatIList(x1)) = x1   
POL(a__isNatList(x1)) = x1   
POL(a__length(x1)) = 2·x1   
POL(a__zeros) = 0   
POL(and(x1, x2)) = 2·x1 + 2·x2   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 2   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

a__isNat(length(V1)) → a__isNatList(V1)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = 1 + x1 + 2·x2   
POL(a__U11(x1, x2)) = 1 + x1 + 2·x2   
POL(a__and(x1, x2)) = x1 + 2·x2   
POL(a__isNat(x1)) = x1   
POL(a__isNatIList(x1)) = 2·x1   
POL(a__isNatList(x1)) = 2·x1   
POL(a__length(x1)) = 1 + 2·x1   
POL(a__zeros) = 0   
POL(and(x1, x2)) = x1 + 2·x2   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = 2·x1   
POL(isNatList(x1)) = 2·x1   
POL(length(x1)) = 1 + 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = x1 + 2·x2   
POL(a__U11(x1, x2)) = x1 + 2·x2   
POL(a__and(x1, x2)) = 2·x1 + x2   
POL(a__isNat(x1)) = x1   
POL(a__isNatIList(x1)) = 2 + x1   
POL(a__isNatList(x1)) = x1   
POL(a__length(x1)) = 2·x1   
POL(a__zeros) = 0   
POL(and(x1, x2)) = 2·x1 + x2   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = 2 + x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
QTRS
              ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
a__zeroszeros
a__isNatIList(X) → isNatIList(X)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 1   
POL(U11(x1, x2)) = x1 + x2   
POL(a__U11(x1, x2)) = x1 + x2   
POL(a__and(x1, x2)) = x1 + x2   
POL(a__isNat(x1)) = x1   
POL(a__isNatIList(x1)) = 2 + x1   
POL(a__isNatList(x1)) = x1   
POL(a__length(x1)) = x1   
POL(a__zeros) = 1   
POL(and(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = 1 + x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = x1   
POL(mark(x1)) = 1 + x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 1   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
QTRS
                  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(s(V1)) → a__isNat(V1)
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(s(V1)) → a__isNat(V1)
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

mark(isNatIList(X)) → a__isNatIList(X)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = 2·x1 + 2·x2   
POL(a__U11(x1, x2)) = 2·x1 + 2·x2   
POL(a__and(x1, x2)) = x1 + x2   
POL(a__isNat(x1)) = x1   
POL(a__isNatIList(x1)) = x1   
POL(a__isNatList(x1)) = x1   
POL(a__length(x1)) = 2·x1   
POL(a__zeros) = 0   
POL(and(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = 2 + 2·x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
QTRS
                      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(s(V1)) → a__isNat(V1)
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(s(V1)) → a__isNat(V1)
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = x1 + x2   
POL(a__U11(x1, x2)) = x1 + x2   
POL(a__and(x1, x2)) = x1 + x2   
POL(a__isNat(x1)) = 1 + x1   
POL(a__isNatList(x1)) = 1 + x1   
POL(a__length(x1)) = x1   
POL(a__zeros) = 1   
POL(and(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = 1 + x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = x1   
POL(mark(x1)) = 1 + x1   
POL(s(x1)) = x1   
POL(tt) = 1   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
QTRS
                          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(s(V1)) → a__isNat(V1)
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(s(V1)) → a__isNat(V1)
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

a__isNat(0) → tt
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = x1 + x2   
POL(a__U11(x1, x2)) = x1 + x2   
POL(a__and(x1, x2)) = x1 + x2   
POL(a__isNat(x1)) = 1 + 2·x1   
POL(a__isNatList(x1)) = x1   
POL(a__length(x1)) = x1   
POL(a__zeros) = 0   
POL(and(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(length(x1)) = x1   
POL(mark(x1)) = x1   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
QTRS
                              ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(s(V1)) → a__isNat(V1)
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(s(V1)) → a__isNat(V1)
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

a__and(tt, X) → mark(X)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = x1 + x2   
POL(a__U11(x1, x2)) = x1 + x2   
POL(a__and(x1, x2)) = x1 + 2·x2   
POL(a__isNat(x1)) = 2·x1   
POL(a__isNatList(x1)) = 1 + x1   
POL(a__length(x1)) = 1 + x1   
POL(a__zeros) = 0   
POL(and(x1, x2)) = x1 + 2·x2   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(length(x1)) = 1 + x1   
POL(mark(x1)) = x1   
POL(s(x1)) = x1   
POL(tt) = 1   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
QTRS
                                  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__isNat(s(V1)) → a__isNat(V1)
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__isNat(s(V1)) → a__isNat(V1)
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

a__U11(tt, L) → s(a__length(mark(L)))
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = x1 + x2   
POL(a__U11(x1, x2)) = x1 + x2   
POL(a__and(x1, x2)) = x1 + 2·x2   
POL(a__isNat(x1)) = x1   
POL(a__isNatList(x1)) = x1   
POL(a__length(x1)) = x1   
POL(a__zeros) = 0   
POL(and(x1, x2)) = x1 + 2·x2   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(length(x1)) = x1   
POL(mark(x1)) = x1   
POL(s(x1)) = x1   
POL(tt) = 2   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
                                ↳ QTRS
                                  ↳ RRRPoloQTRSProof
QTRS
                                      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__isNat(s(V1)) → a__isNat(V1)
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__isNat(s(V1)) → a__isNat(V1)
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

a__isNat(s(V1)) → a__isNat(V1)
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(length(X)) → a__length(mark(X))
mark(s(X)) → s(mark(X))
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = x1 + x2   
POL(a__U11(x1, x2)) = x1 + x2   
POL(a__and(x1, x2)) = x1 + 2·x2   
POL(a__isNat(x1)) = 2·x1   
POL(a__isNatList(x1)) = x1   
POL(a__length(x1)) = 1 + 2·x1   
POL(a__zeros) = 1   
POL(and(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(isNat(x1)) = 2·x1   
POL(length(x1)) = 1 + 2·x1   
POL(mark(x1)) = 2·x1   
POL(s(x1)) = 1 + 2·x1   
POL(zeros) = 1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
                                ↳ QTRS
                                  ↳ RRRPoloQTRSProof
                                    ↳ QTRS
                                      ↳ RRRPoloQTRSProof
QTRS
                                          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

a__zeroscons(0, zeros)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = 2·x1 + x2   
POL(a__U11(x1, x2)) = 2·x1 + 2·x2   
POL(a__and(x1, x2)) = x1 + 2·x2   
POL(a__length(x1)) = 2 + 2·x1   
POL(a__zeros) = 2   
POL(and(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(length(x1)) = 2 + x1   
POL(mark(x1)) = 2·x1   
POL(zeros) = 1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
                                ↳ QTRS
                                  ↳ RRRPoloQTRSProof
                                    ↳ QTRS
                                      ↳ RRRPoloQTRSProof
                                        ↳ QTRS
                                          ↳ RRRPoloQTRSProof
QTRS
                                              ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

mark(cons(X1, X2)) → cons(mark(X1), X2)
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
Used ordering:
Polynomial interpretation [25]:

POL(U11(x1, x2)) = 1 + x1 + x2   
POL(a__U11(x1, x2)) = 2 + x1 + 2·x2   
POL(a__and(x1, x2)) = 2 + x1 + 2·x2   
POL(a__length(x1)) = 2 + 2·x1   
POL(and(x1, x2)) = 1 + x1 + x2   
POL(cons(x1, x2)) = 1 + x1 + x2   
POL(length(x1)) = 1 + 2·x1   
POL(mark(x1)) = 2 + 2·x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
                                ↳ QTRS
                                  ↳ RRRPoloQTRSProof
                                    ↳ QTRS
                                      ↳ RRRPoloQTRSProof
                                        ↳ QTRS
                                          ↳ RRRPoloQTRSProof
                                            ↳ QTRS
                                              ↳ RRRPoloQTRSProof
QTRS
                                                  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(and(X1, X2)) → a__and(mark(X1), X2)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(and(X1, X2)) → a__and(mark(X1), X2)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(and(X1, X2)) → a__and(mark(X1), X2)
Used ordering:
Polynomial interpretation [25]:

POL(U11(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(a__U11(x1, x2)) = 1 + x1 + x2   
POL(a__and(x1, x2)) = 1 + x1 + x2   
POL(and(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(mark(x1)) = 2 + 2·x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
                                ↳ QTRS
                                  ↳ RRRPoloQTRSProof
                                    ↳ QTRS
                                      ↳ RRRPoloQTRSProof
                                        ↳ QTRS
                                          ↳ RRRPoloQTRSProof
                                            ↳ QTRS
                                              ↳ RRRPoloQTRSProof
                                                ↳ QTRS
                                                  ↳ RRRPoloQTRSProof
QTRS
                                                      ↳ RisEmptyProof

Q restricted rewrite system:
R is empty.
Q is empty.

The TRS R is empty. Hence, termination is trivially proven.