Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
a__isNatList(nil) → tt
a__length(nil) → 0
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(U11(x1, x2)) = x1 + 2·x2
POL(a__U11(x1, x2)) = x1 + 2·x2
POL(a__and(x1, x2)) = 2·x1 + 2·x2
POL(a__isNat(x1)) = x1
POL(a__isNatIList(x1)) = x1
POL(a__isNatList(x1)) = x1
POL(a__length(x1)) = 2·x1
POL(a__zeros) = 0
POL(and(x1, x2)) = 2·x1 + 2·x2
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 2
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
a__isNat(length(V1)) → a__isNatList(V1)
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(U11(x1, x2)) = 1 + x1 + 2·x2
POL(a__U11(x1, x2)) = 1 + x1 + 2·x2
POL(a__and(x1, x2)) = x1 + 2·x2
POL(a__isNat(x1)) = x1
POL(a__isNatIList(x1)) = 2·x1
POL(a__isNatList(x1)) = 2·x1
POL(a__length(x1)) = 1 + 2·x1
POL(a__zeros) = 0
POL(and(x1, x2)) = x1 + 2·x2
POL(cons(x1, x2)) = x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 2·x1
POL(isNatList(x1)) = 2·x1
POL(length(x1)) = 1 + 2·x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(U11(x1, x2)) = x1 + 2·x2
POL(a__U11(x1, x2)) = x1 + 2·x2
POL(a__and(x1, x2)) = 2·x1 + x2
POL(a__isNat(x1)) = x1
POL(a__isNatIList(x1)) = 2 + x1
POL(a__isNatList(x1)) = x1
POL(a__length(x1)) = 2·x1
POL(a__zeros) = 0
POL(and(x1, x2)) = 2·x1 + x2
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 2 + x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
a__zeros → zeros
a__isNatIList(X) → isNatIList(X)
Used ordering:
Polynomial interpretation [25]:
POL(0) = 1
POL(U11(x1, x2)) = x1 + x2
POL(a__U11(x1, x2)) = x1 + x2
POL(a__and(x1, x2)) = x1 + x2
POL(a__isNat(x1)) = x1
POL(a__isNatIList(x1)) = 2 + x1
POL(a__isNatList(x1)) = x1
POL(a__length(x1)) = x1
POL(a__zeros) = 1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 1 + x1
POL(isNatList(x1)) = x1
POL(length(x1)) = x1
POL(mark(x1)) = 1 + x1
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 1
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(s(V1)) → a__isNat(V1)
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(s(V1)) → a__isNat(V1)
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
mark(isNatIList(X)) → a__isNatIList(X)
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(U11(x1, x2)) = 2·x1 + 2·x2
POL(a__U11(x1, x2)) = 2·x1 + 2·x2
POL(a__and(x1, x2)) = x1 + x2
POL(a__isNat(x1)) = x1
POL(a__isNatIList(x1)) = x1
POL(a__isNatList(x1)) = x1
POL(a__length(x1)) = 2·x1
POL(a__zeros) = 0
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 2 + 2·x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2·x1
POL(mark(x1)) = x1
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(s(V1)) → a__isNat(V1)
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(s(V1)) → a__isNat(V1)
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(U11(x1, x2)) = x1 + x2
POL(a__U11(x1, x2)) = x1 + x2
POL(a__and(x1, x2)) = x1 + x2
POL(a__isNat(x1)) = 1 + x1
POL(a__isNatList(x1)) = 1 + x1
POL(a__length(x1)) = x1
POL(a__zeros) = 1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 1 + x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = x1
POL(mark(x1)) = 1 + x1
POL(s(x1)) = x1
POL(tt) = 1
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(s(V1)) → a__isNat(V1)
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(s(V1)) → a__isNat(V1)
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
a__isNat(0) → tt
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(U11(x1, x2)) = x1 + x2
POL(a__U11(x1, x2)) = x1 + x2
POL(a__and(x1, x2)) = x1 + x2
POL(a__isNat(x1)) = 1 + 2·x1
POL(a__isNatList(x1)) = x1
POL(a__length(x1)) = x1
POL(a__zeros) = 0
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + 2·x2
POL(isNat(x1)) = x1
POL(length(x1)) = x1
POL(mark(x1)) = x1
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(s(V1)) → a__isNat(V1)
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(s(V1)) → a__isNat(V1)
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
a__and(tt, X) → mark(X)
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(U11(x1, x2)) = x1 + x2
POL(a__U11(x1, x2)) = x1 + x2
POL(a__and(x1, x2)) = x1 + 2·x2
POL(a__isNat(x1)) = 2·x1
POL(a__isNatList(x1)) = 1 + x1
POL(a__length(x1)) = 1 + x1
POL(a__zeros) = 0
POL(and(x1, x2)) = x1 + 2·x2
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(length(x1)) = 1 + x1
POL(mark(x1)) = x1
POL(s(x1)) = x1
POL(tt) = 1
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__isNat(s(V1)) → a__isNat(V1)
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__isNat(s(V1)) → a__isNat(V1)
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
a__U11(tt, L) → s(a__length(mark(L)))
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(U11(x1, x2)) = x1 + x2
POL(a__U11(x1, x2)) = x1 + x2
POL(a__and(x1, x2)) = x1 + 2·x2
POL(a__isNat(x1)) = x1
POL(a__isNatList(x1)) = x1
POL(a__length(x1)) = x1
POL(a__zeros) = 0
POL(and(x1, x2)) = x1 + 2·x2
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(length(x1)) = x1
POL(mark(x1)) = x1
POL(s(x1)) = x1
POL(tt) = 2
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__isNat(s(V1)) → a__isNat(V1)
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__isNat(s(V1)) → a__isNat(V1)
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
a__isNat(s(V1)) → a__isNat(V1)
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
mark(zeros) → a__zeros
mark(length(X)) → a__length(mark(X))
mark(s(X)) → s(mark(X))
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(U11(x1, x2)) = x1 + x2
POL(a__U11(x1, x2)) = x1 + x2
POL(a__and(x1, x2)) = x1 + 2·x2
POL(a__isNat(x1)) = 2·x1
POL(a__isNatList(x1)) = x1
POL(a__length(x1)) = 1 + 2·x1
POL(a__zeros) = 1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(isNat(x1)) = 2·x1
POL(length(x1)) = 1 + 2·x1
POL(mark(x1)) = 2·x1
POL(s(x1)) = 1 + 2·x1
POL(zeros) = 1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
a__zeros → cons(0, zeros)
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(U11(x1, x2)) = 2·x1 + x2
POL(a__U11(x1, x2)) = 2·x1 + 2·x2
POL(a__and(x1, x2)) = x1 + 2·x2
POL(a__length(x1)) = 2 + 2·x1
POL(a__zeros) = 2
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(length(x1)) = 2 + x1
POL(mark(x1)) = 2·x1
POL(zeros) = 1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
Used ordering:
Polynomial interpretation [25]:
POL(U11(x1, x2)) = 1 + x1 + x2
POL(a__U11(x1, x2)) = 2 + x1 + 2·x2
POL(a__and(x1, x2)) = 2 + x1 + 2·x2
POL(a__length(x1)) = 2 + 2·x1
POL(and(x1, x2)) = 1 + x1 + x2
POL(cons(x1, x2)) = 1 + x1 + x2
POL(length(x1)) = 1 + 2·x1
POL(mark(x1)) = 2 + 2·x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(and(X1, X2)) → a__and(mark(X1), X2)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(and(X1, X2)) → a__and(mark(X1), X2)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(and(X1, X2)) → a__and(mark(X1), X2)
Used ordering:
Polynomial interpretation [25]:
POL(U11(x1, x2)) = 1 + 2·x1 + 2·x2
POL(a__U11(x1, x2)) = 1 + x1 + x2
POL(a__and(x1, x2)) = 1 + x1 + x2
POL(and(x1, x2)) = 1 + 2·x1 + 2·x2
POL(mark(x1)) = 2 + 2·x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RisEmptyProof
Q restricted rewrite system:
R is empty.
Q is empty.
The TRS R is empty. Hence, termination is trivially proven.